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Abstract 

Algebraic number theory mainly investigates algebraic structures related to number fields.   Among the 

principal topics of investigation in this subfield of mathematics are the characteristics of integers and the 

extensions of those integers.   This field of study investigates a variety of topics, including the behaviour of 

prime factorisation in number rings, the distribution of ideals, and the arithmetic of algebraic integers.   

As a result of the fact that it offers profound insights into the characteristics of number fields, the study of 

zeta functions, class groups, and unit groups is one of the primary issues addressed by this area.   "Class 

Field Theory," sometimes known as "CFT," is one of the most significant findings in the field of algebraic 

number theory.   This theory provides a comprehensive description of the abelian extensions of number 

fields by making use of reciprocity principles and ideal class groups.   Through the use of Artin 

reciprocity and Takagi's theory, a robust relationship is made between Galois theory and number theory. 

This connection is formed when the structure of abelian extensions is shown.   In addition to having a 

significant impact on contemporary cryptography and arithmetic geometry, CFT also allows for the 

development of sophisticated tools that may be used to investigate prime behaviour in field extensions.   

This article begins with a review of some of the most important concepts in algebraic number theory, and 

then moves on to discuss the fundamental discoveries made in class field theory.   An investigation of the 

influence that concepts such as local and global reciprocity laws, ideal class groups, and ramification 

theory have had on the teaching of mathematics in the modern era is presented. 

Keywords: Algebraic, Number, Theory 

Introduction  

The arithmetic properties of number fields, which are extensions of the rational numbers, are the subject 

of study in the discipline of algebraic number theory, which is one of the most important branches of 

mathematics.  Q is a mathematical expression.   Within the scope of the study, the concept of integers is 

broadened to include algebraic integer rings, and concepts such as prime factorisation, ideal class groups, 

and unit groups are investigated.   The subject matter has a significant impact on the distribution of prime 

numbers, modular forms, and Diophantine equations, among other significant effects.   Due to the fact that 

it provides a taxonomy of abelian extensions of number fields, Class subject Theory (CFT) is considered 

to be a key work in the subject of algebraic number theory.   Kronecker's concept of relating field 

extensions to ideal class groups and Gauss's work on quadratic reciprocity were the foundations upon 

which the Quantum Field Theory (CFT) was first built.   The theory, which was meticulously developed 

by Takagi, Artin, and Chevalley, establishes not only a strong connection between Galois theory and the 

mathematics of number fields, but also a strong connection between the two.   By providing an outline of 

the connection between abelian Galois extensions and generalised ideal class groups, it offers a 
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comprehensive basis for understanding field extensions.   One of the most significant theoretical 

achievements, Class Field Theory has several practical applications in a wide range of domains, including 

modular forms, encryption, and elliptic curves, among others.   The fundamental concepts of quantum 

mechanics are obtained from an analysis of algebraic number theory, which is presented in this article.   A 

variety of topics are included in this discussion, including the structure of number fields, the qualities of 

ideals, and the reciprocity laws, which serve as the foundation for the present algebraic number theory. 

 

The ring of integers 

Let K be an algebraic number field. Each element  of K satisfies an equation 

 

with coefficient  in  and is said to be an algebraic integer if it satisfies suc an equation with 

coefficient  in  We shall see (2.1) that the algebraic integers form a subrin  

An algebraic number is an algebraic integer if and only if its minimal polynomial over  has coefficients 

in  (see 2.11). Consider, for example, the field  where d is a square-free integer. The 

minimal polynomial of  

 

and so  is an algebraic integer if and only on 

 

2 Z: From this it follows easily that, when d =2; 3 mod 4, is an algebraic integer if and only if a and b 

are integers, 

 

o ; and, if d = 1 mod 4,  is an algebraic integer if and only if a and b are either both integers or both half-

integers, 

 

For example, 

http://www.ijesrr.org/
mailto:editor@ijesrr.org


                 International Journal of Education and Science Research Review 
Volume-3, Issue-2 March-April- 2016                                                                       E-ISSN 2348-6457 P-ISSN 2349-1817                                                                                         
               www.ijesrr.org                                                                                                                   Email- editor@ijesrr.org 

Copyright@ijesrr.org                                                                                                                               Page      253 

 

 

 

as one would hope.  

Preliminaries 

Complexity and algorithmic processes. The reader is assumed to have an inherent understanding of 

algorithms, which are defined as a set of instructions for creating an output from a specified input data set, 

which encompasses a finite sequence of nonnegative integers. This section is based on the assumption that 

the reader has this understanding.   While it is true that algorithms may be referred to informally as Turing 

machines, we have discovered that many of our results are enhanced by using a more realistic "machine 

model" in terms of running time, which is another idea that is intuitively evident yet unclear. This is in 

contrast to the use of a computer that is theoretically flawless.   See and the literature that is mentioned 

there for more information on these subjects. 

The length of a finite sequence of nonnegative integers n1, n2, . . . , nt is defined to be  

Consider the possibility that it is exactly proportional to the binary representation of the. This would be a 

rough approximation.   Obtaining a very sharp upper limit on the algorithm's running time expressed as a 

function of the length of the input data is what we mean when we speak about studying the complexity of 

an algorithm in this research. This is what we mean when we say that we are analysing the complexity of 

an algorithm.   In order to separate it from the difficulty of space, this is more correctly referred to as the 

complexity of time.   In order to be considered a decent algorithm, its execution time should be 

polynomial-time is  This is a representation of the length of the input denoted by l.   The 

objective of complexity research is to identify the algorithm that is the least complicated for a certain 

problem.   During the course of this investigation, we will not be concerned with the value of the O-

constant; rather, we will consider the complexity analysis to be finished once a suitable solution has been 

found for a problem.   When it comes to solving a problem, an algorithm is deemed to be outstanding if it 

is nearly as simple to solve a single instance of the problem as it is to formulate the algorithm itself.   An 

algorithm that can draw bits at random by using a random number generator is referred to as a 

probabilistic algorithm. We will sometimes discuss probabilistic algorithms.   For instance, a Turing 

computer that does not guarantee any particular conclusion is an illustration of this.   The use of random 

number generators (RNGs) is expressly prohibited, unless the word "probabilistic" is utilised; in order to 

emphasise this point, we refer to these approaches as deterministic.   In a probabilistic algorithm, each 

fixed value of the input data has a corresponding distribution. This implies that the output and the amount 

of time it takes to execute are not the only factors that are impacted by the distribution of the input.   What 

is known as the expected running time of a probabilistic algorithm is the amount of time that is estimated 
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to be required for the algorithm to process an input.   One of the most significant aspects of analysing the 

difficulty of a probabilistic algorithm is determining a maximum upper limit for the expected amount of 

time it takes to execute the algorithm as a function of the length of the input sequence.   We consult in 

order to get a few recommendations that are applicable and might be used for this purpose. A probabilistic 

algorithm is called good if its expected running time is  where l is the length of the input. For the 

time being, we are going to disregard the fact that algorithmic number theory is still concerned with 

parallel algorithms, which are still mostly unimportant.   According to a number of the conclusions 

presented in the study, "there exists" an algorithm that has certain qualities.   An algorithm of this kind 

may be shown to work in every circumstance, at least in principle.   If it is not specifically specified 

differently, every single O-constant is a real number that can be effectively calculated. 

Encoding data 

As was said before, each and every algorithm accepts finite sequences of nonnegative integers as input 

and delivers them as output.   Working with sequences of nonnegative integers that encompass 

mathematical ideas is beneficial; but, working with mathematical concepts is preferable in the 

mathematical discipline of thinking and writing about algorithms. This is because dealing with sequences 

requires more mental effort.   It is more easier to state that an algebraic number field is utilised as the input 

of an algorithm rather than referring to the sequence of coefficients of a polynomial that defines a field. 

This is because the polynomial is the function that defines the field.  An additional example would be the 

computation of the kernel of a certain endomorphism of a vector space. This method is not only more 

concise but also simpler to comprehend in comparison to the process of finding a matrix in which each 

column represents a basis for the kernel in reference to a particular basis of the vector space.   A 

agreement on an encoding of number fields, vector spaces, and mappings between them in terms of finite 

sequences of nonnegative integers is required in order to allow such a compact means of expressing 

things. This is because the amount of space required to represent things is limited.   Because of this, the 

remaining portion of this composition is included here.   In situations when there is more than one 

apparent way to carry out the encoding, it is essential to take into consideration whether or not there is a 

technique that transitions between encodings that is of sufficient quality.   In situations like this, we often 

fail to discern between the encodings, even if it is not necessarily necessary for them to be completely 

identical for reasons of practicality.   We will make the observation that the issue of encoding 

mathematical objects does, despite the fact that we will not be doing a systematic investigation into the 

many basic challenges that are generated by the topic.   We will not be doing much more than what is 

necessary in the succeeding sections of this project. 

Elementary arithmetic 

When referring to the ring of integers, the sign Z is used.   When a sign bit is included into the equation, it 

becomes clear that all numbers may be represented by integers that are not negative.   For arithmetic 

operations, the time complexity of classical algorithms is denoted by the notation O(l), where l represents 

the length of the input.   The Euclidean technique for determining greatest common divisors and the 

typical algorithms for multiplication and division with remainder both have a running time that is O(l 2); 

this means that they both take the same amount of time to complete. With the help of more sophisticated 

methods this can be improved to  Although establishing whether or not an integer is 

prime is a problem that is quite similar to this one, dissecting a positive integer into prime numbers is not 
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known to be advantageously algorithmic. However, there is a good probabilistic algorithm that may be 

used for this particular subject matter.   On the other hand, there are no well-known algorithms that are 

capable of solving the tasks of finding squarefree integers and calculating the biggest square that can be 

split by a given positive integer. This is true even when the word "good" is used in a less formal sense. 

  An input parameter for some algorithms is a prime integer denoted by the letter p.   For the sake of this 

scenario, it is assumed that the prime is encoded independently of any other value; for example, the 

number n represents the nth prime.   Considering that we do not possess a robust deterministic method for 

identifying primes, it is logical to question what happens to the process when p is neither prime nor known 

to be prime. This is because primes are not guaranteed to be primes.   Primality tests may be helpful in 

identifying algorithms that result in the conclusion that p is not prime. This may be the case, for instance, 

when the technique takes an excessive amount of time to finish the computations or when a known prime 

characteristic is contested.   On account of the fact that they generate nontrivial p factors, some approaches 

could even be helpful as procedures for integer factoring.   With regard to both types of algorithms, one 

can ponder the questions of what implications can be derived if the program seems to have successfully 

exited.   In order to further establish that p is prime, is it possible to utilise this?   What conclusions may 

we draw from the result, supposing that p is not a prime number?   Schoof's method does not effectively 

answer the question of how many points an elliptic curve over a finite field may hold. This is a question 

that has been raised.   All field operations may be performed on rational numbers in polynomial time, and 

it is simple to describe rational numbers as pairs of integers. 

  Positiveness is required for the number n.   The encoding of the ring Z/nZ elements is assumed to be as 

nonnegative integers that are less than n. This is the assumption that is made.   It is possible to carry out 

the ring operations in a time that is polynomial.   An ideal I ⊂ Z/nZ may be encoded in a number of ways. 

One of these ways is by using its index d = [Z/nZ: I], which completely describes the ideal and can be any 

divisor of n.  Using a single generator or a limited sequence of components that forms I is another method. 

Both of these methods are viable options.   When describing an element of I, one method to do so is to say 

that it is a Z/nZ element that is divisible by d.  It is also possible to describe it as an explicit Z/nZ linear 

combination of the generators of I that are given, or as an explicit multiple of a single generator that is 

supplied.   When utilising the extended Euclidean approach, it is simple to demonstrate that any of these 

ideal and element encodings may be passed on to any other in polynomial time, and that it is also possible 

to check the equality and inclusion of given ideals.   As an example, if one is provided with a nonzero 

element of Z/nZ, it is possible to determine in polynomial time whether or not it is a unit, identify its 

inverse, and, if it is not a unit, locate a nontrivial divisor of n.   In the event when n= p is a prime number, 

we discover that all field operations in Fp = Z/pZ may be completed in a time that is polynomial. 

Linear algebra. 

In light of the fact that an encoding of the elements of a field F has been decided upon, let us imagine that 

F is the field of rational numbers Q or the field Fp for some prime integer p (for more information, see to 

section 2.3).   In order to describe a vector space over F that has finite dimensions, all that is required is 

the availability of an integer n that is not negative.   The value of n must be specified in unary notation, 

which means that it must be represented as a sequence of n ones ranging from 1 to n. This is done to 

guarantee that the encoding is at least n bits long.   This is as a result of the fact that the amount of time 

that is needed by almost any method that makes use of n-dimensional vector spaces begins with n.   When 

http://www.ijesrr.org/
mailto:editor@ijesrr.org


                 International Journal of Education and Science Research Review 
Volume-3, Issue-2 March-April- 2016                                                                       E-ISSN 2348-6457 P-ISSN 2349-1817                                                                                         
               www.ijesrr.org                                                                                                                   Email- editor@ijesrr.org 

Copyright@ijesrr.org                                                                                                                               Page      256 

it comes to this vector space, every single member is represented by a sequence of n elements that belong 

to the field F.   When representing homomorphisms across vector spaces, matrix notation is the notation 

that is used.   Encapsulating a subspace of a vector space may be accomplished by the use of a number of 

different element sequences. These include an element sequence that spans a subspace, an element 

sequence that forms its basis, and the kernel of a homomorphism from one vector space to another.   

Polynomial-time algorithms are the typical linear algebraic algorithms that are based on Gaussian 

elimination. These algorithms are applicable to all fields F that we shall investigate.  Converting between 

different subspace representations, identifying whether a subspace is invertible and, if it is, producing its 

inverse, constructing quotient spaces, direct sums, and tensor products, and generating intersections and 

sums of subspaces are some of the things that these algorithms are capable of doing.   Proofs are 

straightforward; the most important thing is to establish upper bounds on the size of the integers that are 

used in the computations. For example, in the scenario when F equals Q, this is the case.   When division 

by a nonzero element fails, a nontrivial divisor of p is identified. Alternatively, the approach works as if F 

were a field if any of these techniques are used to F = Z/pZ without the knowledge that p is prime.   In the 

second case, it is possible to circumvent the requirement that p is prime by just interpreting the output of 

the algorithm in terms of free Z/pZ-modules (you may refer to [14] for more information). 

Finitely generated abelian groups. 

Specifying a finitely generated abelian group is done by giving a sequence of nonnegative integers d1, d2, 

. . . , dt; the group is then  which enables us to represent the elements of the group by means 

of sequences of t integers. In our applications the group is usually either finite  or free abelian 

 To make the di unique one may require that  The amount of time 

required to do this assignment is polynomial.   Due to the fact that it could be difficult to execute 

algorithmically, it is not required to need the di to be prime powers.   With this description of finitely 

created abelian groups and a reference to 2.4, it is up to the reader to devise their own ways of encoding 

maps and subgroups. They may take inspiration from this description.   It is also possible for him to make 

advantage of the Hermite and Smith reduction of integer matrices (refer to [29]) in order to develop 

efficient techniques for the counterparts of the challenges that were addressed in 2.4.   One of the most 

important challenges is to keep the intermediate numbers to a minimum. 

Number fields 

By a number field or an algebraic number field we mean in this paper a field extension K of finite degree 

of the field Q of rational numbers. For the basic theory of algebraic number fields. 

An algebraic number field K is encoded as its underlying Q-vector space together with the multiplication 

map  as in 2.7; in other words, giving K amounts to giving a positive integer n and a system 

of n 3 rational numbers aijk that describe the multiplication in K on a vector space basis of K over Q (cf. 

2.8 above). As in, one shows that the field operations in a number field can be performed in polynomial 

time. Using standard arguments from field theory one shows that there are good algorithms for 

determining the irreducible polynomial of a given element of K over a given subfield and for finding a 

primitive element of K, i.e., an element  for which  It follows that giving a number field 

is equivalent to giving an irreducible polynomial -  and letting the field be  
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When dealing with one-variable polynomials that have coefficients in an algebraic number field, it is 

feasible to factor irreducible polynomials into polynomial time.   This may be accomplished by the use of 

basis reduction; for references, have a look at [42, 35, 39, 40].   The following two results are worthy of 

notice.   One of the most effective methods for establishing whether or not a certain set of n three rational 

numbers comprises a number field is shown in the argument that is offered in section 2.8.  The first point 

that has to be stated is this one.   Second, it is feasible to discover if two number fields K = Q(α) and K′ 

are isomorphic in polynomial time, and if they are, it is also possible to find all any isomorphisms that 

exist between them.   For this purpose, the irreducible polynomial f of over Q is reduced to irreducible 

components in the ring K′ [X]. This allows for the achievement of the desired result.  Following that, it is 

shown that these linear components have a bijective correlation with the field homomorphisms K K′.  If 

and only if the degree of the two fields is identical over Q, then a field homomorphism is regarded to be 

an isomorphism by the mathematical community. 

  Considering that K is equal to K′, it can be deduced from the preceding section that it is feasible to 

discover all automorphisms of K. Furthermore, by combining these automorphisms, it is possible to create 

a complete multiplication table of field automorphisms of K for the group Aut K in a time that is 

polynomial.   The proof of 3.5 demonstrates that it is feasible to locate all maximal acceptable subfields of 

a number field of degree n in polynomial time. This might be accomplished by using polynomial time.   It 

is an excessive amount of effort to search for all of the subfields, given that the number of subfields does 

not have a polynomially bounded number.   One of the things that I do not know for certain is whether or 

not it is possible to compute the number of unique minimal subfields from Q in polynomial time (1).   It is 

possible for linear algebra to determine the intersections and composites of any two subfields that are 

defined.   We would want for our predicted running times to be consistent in K, and we would like to 

stress that our algorithms handle the number field K as a variable rather than a fixed variable wherever 

possible. 

Conclusion 

A collaborative effort between Algebraic Number Theory and Class Field Theory has laid the groundwork 

for modern number theory. This study gives light on the structure of number fields and their extensions, 

which is the basis of contemporary number theory.   By exploring rings of algebraic integers, ideal class 

groups, and factorisation characteristics, algebraic number theory offers a basis for understanding the 

arithmetic behaviour of numbers other than rational integers. This foundation is provided by the study of 

algebraic number theory.   The Class discipline Theory (CFT) is a remarkable achievement in this 

discipline since it offers a taxonomy of abelian extensions of number fields via the use of reciprocity laws 

and ideal class groups.   Local and global class field theory is a theory that builds links between number 

fields and their local counterparts. Additionally, the Hilbert Class Field and Artin Reciprocity Law are 

powerful tools that may be used for the study of field extensions and prime ideal behaviour.   These 

notions have repercussions that extend beyond the realm of mathematics.   Ellipstic curve algorithms and 

pairing-based protocols are two examples of modern encryption methods that make use of the laws of 

quantum mechanics to ensure the confidentiality of communications sent and received.   Not only is class 

field theory essential in algebraic geometry, but it also plays a significant role in the Langlands program, 

where it influences the direction that research is taking.   Despite the fact that the discipline of number 

theory is constantly evolving, the ideas of algebraic number theory and class field theory continue to be 

very important.   It is possible to see their influence in the fields of computational mathematics and 
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cryptography, where they provide answers to significant theoretical problems that are applicable in the 

actual world.   As a result of research that expands upon these principles, our understanding of number 

fields and the profound connections that they have with other areas of mathematics will undoubtedly be 

extended in the years to come. 
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